N
@

P

SOCIEDAD
PERUANA DE
COMPUTACION

1. COURSE

Peruvian Computing Society (SPC)

School of Computer Science
Sillabus 2021-1

CS3P3. Internet of Things (Mandatory)

2. GENERAL INFORMATION

2.1 Credits

2.2 Theory Hours

2.3 Practice Hours

2.4 Duration of the period
2.5 Type of course

2.6 Modality

2.7 Prerrequisites

3. PROFESSORS

3

1 (Weekly)

2 (Weekly)

16 weeks

Mandatory

Face to face

CS3P1. Parallel and Distributed Computing . (8" Sem)

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

The last decade has an explosive growth in multiprocessor computing, including multi-core processors and distributed
data centers. As a result, parallel and distributed computing has evolved from a broadly elective subject to be one of the
major components in mesh studies in undergraduate computer science. Both parallel computing and distribution involve
the simultaneous execution of multiple processes on different devices that change position.

5. GOALS

e That the student is able to create parallel applications of medium complexity by efficiently taking advantage of

different mobile devices.

6. COMPETENCES

a) An ability to apply knowledge of mathematics, science. (Usage)

b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Usage)

i) An ability to use the techniques, skills, and modern computing tools necessary for computing practice. (Usage)

J) Apply the mathematical basis, principles of algorithms and the theory of Computer Science in the modeling and design
of computational systems in such a way as to demonstrate understanding of the equilibrium points involved in the

chosen option. (Usage)

7. SPECIFIC COMPETENCES

8. TOPICS

Unit 1: Parallelism Fundamentals (18)

Competences Expected: a

Topics

Learning Outcomes

e Multiple simultaneous computations

e Goals of parallelism (e.g., throughput) versus con-
currency (e.g., controlling access to shared resources)

e Parallelism, communication, and coordination

— Parallelism, communication, and coordination
— Need for synchronization

e Programming errors not found in sequential pro-
gramming

— Data races (simultaneous read/write or

write/write of shared state)

— Higher-level races (interleavings violating pro-
gram intention, undesired non-determinism)

— Lack of liveness/progress (deadlock, starvation)

e Distinguish using computational resources for a
faster answer from managing efficient access to a
shared resource [Familiarity]

e Distinguish multiple sufficient programming con-
structs for synchronization that may be inter-
implementable but have complementary advan-
tages [Familiarity]

e Distinguish data races from higher level races [Fa-
miliarity]

Readings : [Pacll], [Mat14], [Qui03]

Unit 2: Parallel Architecture (12)

Competences Expected: b

Topics

Learning Outcomes

e Multicore processors
e Shared vs distributed memory
e Symmetric multiprocessing (SMP)
e SIMD, vector processing
e GPU, co-processing
e Flynn’s taxonomy
e Instruction level support for parallel programming
— Atomic instructions such as Compare and Set
e Memory issues
— Multiprocessor caches and cache coherence
— Non-uniform memory access (NUMA)
e Topologies

— Interconnects
— Clusters

— Resource sharing (e.g., buses and interconnects)

e Explain the differences between shared and dis-
tributed memory [Assessment]

e Describe the SMP architecture and note its key fea-
tures [Assessment]

o Characterize the kinds of tasks that are a natural
match for SIMD machines [Usage]

e Describe the advantages and limitations of GPUs vs
CPUs [Usage]

e Explain the features of each classification in Flynn’s
taxonomy [Usage]

e Describe the challenges in maintaining cache coher-
ence [Familiarity]

e Describe the key performance challenges in different
memory and distributed system topologies [Famil-
iarity]

Readings : [Pacll], [KH13], [SK10]

Unit 3: Parallel Decomposition (18)

Competences Expected: i

Topics

Learning Outcomes

Need for communication and coordina-
tion/synchronization

Independence and partitioning
Basic knowledge of parallel decomposition concept
Task-based decomposition

— Implementation strategies such as threads
Data-parallel decomposition

— Strategies such as SIMD and MapReduce

Actors and reactive processes (e.g., request handlers)

e Explain why synchronization is necessary in a spe-
cific parallel program [Usage]

e Identify opportunities to partition a serial program
into independent parallel modules [Familiarity]

e Write a correct and scalable parallel algorithm [Us-
age]

e Parallelize an algorithm by applying task-based de-
composition [Usage]

e Parallelize an algorithm by applying data-parallel
decomposition [Usage]

e Write a program using actors and/or reactive pro-
cesses [Usage]

Readings : [Pacll], [Mat14], [Qui03]

Unit 4: Communication and Coordination (18)

Competences Expected: i

Topics

Learning Outcomes

e Shared Memory

e Consistency, and its role in programming language
guarantees for data-race-free programs

e Message passing

— Point-to-point versus multicast (or event-

based) messages
— Blocking versus non-blocking styles for sending
and receiving messages

— Message buffering (cross-reference
PF/Fundamental Data Structures/Queues)

e Atomicity
— Specifying and testing atomicity and safety re-
quirements

— Granularity of atomic accesses and updates,
and the use of constructs such as critical sec-
tions or transactions to describe them

— Mutual Exclusion using locks,
monitors, or related constructs

semaphores,

x Potential for liveness failures and deadlock
(causes, conditions, prevention)

— Composition

x Composing larger granularity atomic ac-
tions using synchronization

* Transactions, including optimistic and con-
servative approaches

o Consensus

— (Cyclic) barriers, counters, or related con-
structs

e Conditional actions

— Conditional waiting (e.g., using condition vari-
ables)

e Use mutual exclusion to avoid a given race condi-
tion [Usage]

e Give an example of an ordering of accesses among
concurrent activities (eg, program with a data race)
that is not sequentially consistent [Familiarity]

e Give an example of a scenario in which blocking mes-
sage sends can deadlock [Usage]

e Explain when and why multicast or event-based mes-
saging can be preferable to alternatives [Familiarity]

e Write a program that correctly terminates when all
of a set of concurrent tasks have completed [Usage]

e Give an example of a scenario in which an attempted
optimistic update may never complete [Familiarity]

e Use semaphores or condition variables to block
threads until a necessary precondition holds [Usage]

Readings : [Pacll], [Mat14], [Qui03]

Unit 5: Parallel Algorithms, Analysis, and Programming (18)

Competences Expected: i

Topics

Learning Outcomes

e Critical paths, work and span, and the relation to
Amdahl’s law

e Speed-up and scalability
e Naturally (embarrassingly) parallel algorithms

e Parallel algorithmic patterns (divide-and-conquer,
map and reduce, master-workers, others)

— Specific algorithms (e.g., parallel MergeSort)

e Parallel graph algorithms (e.g., parallel short-
est path, parallel spanning tree) (cross-reference
AL/Algorithmic Strategies/Divide-and-conquer)

e Parallel matrix computations
e Producer-consumer and pipelined algorithms

e Examples of non-scalable parallel algorithms

e Define “critical path”, “work”, and “span” [Familiar-
ity]

e Compute the work and span, and determine the crit-
ical path with respect to a parallel execution dia-
gram [Usage]

e Define “speed-up” and explain the notion of an algo-
rithm’s scalability in this regard [Familiarity]

e Identify independent tasks in a program that may be
parallelized [Usage]

e Characterize features of a workload that allow or pre-
vent it from being naturally parallelized [Familiarity]

e Implement a parallel divide-and-conquer (and/or
graph algorithm) and empirically measure its per-
formance relative to its sequential analog [Usage]

e Decompose a problem (eg, counting the number of
occurrences of some word in a document) via map
and reduce operations [Usage]

e Provide an example of a problem that fits the
producer-consumer paradigm [Usage]

e Give examples of problems where pipelining would
be an effective means of parallelization [Usage]

e Implement a parallel matrix algorithm [Usage]

e Identify issues that arise in producer-consumer al-
gorithms and mechanisms that may be used for ad-
dressing them [Usage]

Readings : [Mat14], [Qui03]

Unit 6: Parallel Performance (18)
Competences Expected: j
Topics Learning Outcomes

e Load balancing

Detect and correct a load imbalance [Usage]

e Performance measurement e Calculate the implications of Amdahl’s law for
. . a particular parallel algorithm (cross-reference
e Scheduling and contention (cross-reference SF /Evaluation for Amdahl’s Law) [Usage]

OS/Scheduling and Dispatch)
e Describe how data distribution/layout can affect an

¢ Evaluating communication overhead algorithm’s communication costs [Familiarity]

* Data management e Detect and correct an instance of false sharing [Us-

— Non-uniform communication costs due to prox- age]

imity (cross-reference SF/Proximity) e Explain the impact of scheduling on parallel perfor-

— Cache effects (e.g., false sharing) mance [Familiarity]

— Maintaining spatial locality e Explain performance impacts of data locality [Famil-

e Power usage and management iarity]
e Explain the impact and trade-off related to power
usage on parallel performance [Familiarity]

Readings : [Pacll], [Mat14], [KH13], [SK10]

9. WORKPLAN

9.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the
different stages of the course evaluation.

9.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students
to internalize the concepts.

9.3 Practical Sessions
The practical sessions are held in class where a series of exercises and/or practical concepts are developed through
problem solving, problem solving, specific exercises and/or in application contexts.

10. EVALUATION SYSTEM
ik EVALUATION MISSING Hostse

11. BASIC BIBLIOGRAPHY

[KH13] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on Approach. 2nd.
Morgan Kaufmann, 2013. 1SBN: 978-0-12-415992-1.

[Mat14] Norm Matloff. Programming on Parallel Machines. University of California, Davis, 2014. URL: http://heather.
cs.ucdavis.edu/ matloff/158/PLN/ParProcBook.pdf.

[Pacll] Peter S. Pacheco. An Introduction to Parallel Programming. 1st. Morgan Kaufmann, 2011. 1SBN: 978-0-12-374260-
5.

[QuiO3] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. 1st. McGraw-Hill Education Group, 2003.
ISBN: 0071232656.

[SK10] Jason Sanders and Edward Kandrot. CUDA by Ezample: An Introduction to General-Purpose GPU Program-
ming. 1st. Addison-Wesley Professional, 2010. 1sBN: 0131387685, 9780131387683.

