
Peruvian Computing Society (SPC)
School of Computer Science

Sillabus 2021-I

1. COURSE
CS392. Tópicos en Ingenieŕıa de Software (Elective)

2. GENERAL INFORMATION
2.1 Credits : 4
2.2 Theory Hours : 2 (Weekly)
2.3 Practice Hours : 2 (Weekly)
2.4 Duration of the period : 16 weeks
2.5 Type of course : Elective
2.6 Modality : Face to face
2.7 Prerrequisites : CS391. Software Engineering III. (7th Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE
Software development requires the use of best development practices, IT project management, team management and
efficient and rational use of quality assurance and portfolio management frameworks, these elements are part key and
transversal for the success of the production process.

This course explores the design, selection, implementation and management of IT solutions in Organizations. The
focus is on applications and infrastructure and their application in the business.

5. GOALS

• Understand a variety of frameworks for enterprise architecture analysis and decision making.

• Use techniques to evaluate and manage risk in the company’s portfolio.

• Assess and plan the integration of emerging technologies.

• Understand the role and potential of IT to support business process management.

• Understand the different approaches to modeling and improving business processes.

• Describe and understand quality assurance models as a key framework for successful IT projects.

• Understand and apply the IT Governance framework as a key element in managing the Enterprise application
portfolio.

6. COMPETENCES

c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as
economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. (Usage)

d) An ability to function on multidisciplinary teams. (Usage)

i) An ability to use the techniques, skills, and modern computing tools necessary for computing practice. (Usage)

j) Apply the mathematical basis, principles of algorithms and the theory of Computer Science in the modeling and design
of computational systems in such a way as to demonstrate understanding of the equilibrium points involved in the
chosen option. (Assessment)

m) Transform your knowledge of the area of Computer Science into technological enterprises. (Assessment)

o) Improve the conditions of society by putting technology at the service of the human being. (Usage)

1

7. SPECIFIC COMPETENCES

NoSpecificOutcomes

8. TOPICS

2

Unit 1: Software Design (18)
Competences Expected: c,d,i,j,m,o
Topics Learning Outcomes

• System design principles: levels of abstraction (ar-
chitectural design and detailed design), separation of
concerns, information hiding, coupling and cohesion
, re-use of standard structures

• Design Paradigms such as structured design (top-
down functional decomposition), object-oriented
analysis and design, event driven design, component-
level design, data-structured centered, aspect ori-
ented, function oriented, service oriented

• Structural and behavioral models of software designs

• Design patterns

• Relationships between requirements and designs:
transformation of models, design of contracts, invari-
ants

• Software architecture concepts and standard archi-
tectures (e.g. client-server, n-layer, transform cen-
tered, pipes-and-filters)

• The use of component desing: component selec-
tion, design, adaptation and assembly of compo-
nents, component and patterns, components and ob-
jects (for example, building a GUI using a standar
widget set)

• Refactoring designs using design patterns

• Internal design qualities, and models for them: effi-
ciency and performance, redundacy and fault toler-
ance, traceability of requeriments

• Measurement and analysis of design quality

• Tradeoffs between different aspects of quality

• Application frameworks

• Middleware: the object-oriented paradigm within
middleware, object request brokers and marshalling,
transaction processing monitors, workflow systems

• Principles of secure design and coding

– Principle of least privilege

– Principle of fail-safe defaults

– Principle of psychological acceptability

• Articulate design principles including separation of
concerns, information hiding, coupling and cohesion,
and encapsulation [Usage]

• Use a design paradigm to design a simple software
system, and explain how system design principles
have been applied in this design [Usage]

• Construct models of the design of a simple software
system that are appropriate for the paradigm used
to design it [Usage]

• Within the context of a single design paradigm, de-
scribe one or more design patterns that could be ap-
plicable to the design of a simple software system
[Usage]

• For a simple system suitable for a given scenario,
discuss and select an appropriate design paradigm
[Usage]

• Create appropriate models for the structure and be-
havior of software products from their requirements
specifications [Usage]

• Explain the relationships between the requirements
for a software product and its design, using appro-
priate models [Usage]

• For the design of a simple software system within
the context of a single design paradigm, describe the
software architecture of that system [Usage]

• Given a high-level design, identify the software ar-
chitecture by differentiating among common soft-
ware architectures such as 3-tier, pipe-and-filter, and
client-server [Usage]

• Investigate the impact of software architectures se-
lection on the design of a simple system [Usage]

• Apply simple examples of patterns in a software de-
sign [Usage]

• Describe a form of refactoring and discuss when it
may be applicable [Usage]

• Select suitable components for use in the design of a
software product [Usage]

• Explain how suitable components might need to be
adapted for use in the design of a software product
[Usage]

• Design a contract for a typical small software com-
ponent for use in a given system [Usage]

• Discuss and select appropriate software architecture
for a simple system suitable for a given scenario [Us-
age]

• Apply models for internal and external qualities in
designing software components to achieve an accept-
able tradeoff between conflicting quality aspects [Us-
age]

• Analyze a software design from the perspective of a
significant internal quality attribute [Usage]

• Analyze a software design from the perspective of a
significant external quality attribute [Usage]

• Explain the role of objects in middleware systems
and the relationship with components [Usage]

• Apply component-oriented approaches to the design
of a range of software, such as using components for
concurrency and transactions, for reliable commu-
nication services, for database interaction including
services for remote query and database management,
or for secure communication and access [Usage]

• Refactor an existing software implementation to im-
prove some aspect of its design [Usage]

• State and apply the principles of least privilege and
fail-safe defaults [Usage]

Readings : [Som17], [PM15]

3

Unit 2: Software Project Management (14)
Competences Expected: c,d,i,j,m,o
Topics Learning Outcomes

• Team participation

– Team processes including responsabilities for
task, meeting structure, and work schedule

– Roles and responsabilities in a software team

– Team conflict resolution

– Risks associated with virtual teams (communi-
cation, perception, structure)

• Effort estimation (at the personal level)

• Risk

– The role of risk in the lifecycle

– Risk categories including security, safety, mar-
ket, financial, technology, people, quality, struc-
ture and process

• Team management

– Team organization and decision-making

– Role identification and assigment

– Individual and team performance assessment

• Project management

– Scheduling and tracking

– Project management tools

– Cost/benefit analysis

• Software measurement and estimation techniques

• Software quality assurance and the role of measure-
ments

• Risk

– The role of risk in the lifecycle

– Risk categories including security, safety, mar-
ket, financial, technology, people, quality, struc-
ture and process

• System-wide approach to risk including hazards as-
sociated with tools

• Discuss common behaviors that contribute to the ef-
fective functioning of a team [Usage]

• Create and follow an agenda for a team meeting [Us-
age]

• Identify and justify necessary roles in a software de-
velopment team [Usage]

• Understand the sources, hazards, and potential ben-
efits of team conflict [Usage]

• Apply a conflict resolution strategy in a team setting
[Usage]

• Use an ad hoc method to estimate software develop-
ment effort (eg, time) and compare to actual effort
required [Usage]

• List several examples of software risks [Usage]

• Describe the impact of risk in a software development
lifecycle [Usage]

• Describe different categories of risk in software sys-
tems [Usage]

• Demonstrate through involvement in a team project
the central elements of team building and team man-
agement [Usage]

• Describe how the choice of process model affects
team organizational structures and decision-making
processes [Usage]

• Create a team by identifying appropriate roles and
assigning roles to team members [Usage]

• Assess and provide feedback to teams and individu-
als on their performance in a team setting [Usage]

• Using a particular software process, describe the as-
pects of a project that need to be planned and moni-
tored, (eg, estimates of size and effort, a schedule, re-
source allocation, configuration control, change man-
agement, and project risk identification and manage-
ment) [Usage]

• Track the progress of some stage in a project using
appropriate project metrics [Usage]

• Compare simple software size and cost estimation
techniques [Usage]

• Use a project management tool to assist in the as-
signment and tracking of tasks in a software devel-
opment project [Usage]

• Describe the impact of risk tolerance on the software
development process [Usage]

• Identify risks and describe approaches to manag-
ing risk (avoidance, acceptance, transference, mit-
igation), and characterize the strengths and short-
comings of each [Usage]

• Explain how risk affects decisions in the software de-
velopment process [Usage]

• Identify security risks for a software system [Usage]

• Demonstrate a systematic approach to the task of
identifying hazards and risks in a particular situation
[Usage]

• Apply the basic principles of risk management in a
variety of simple scenarios including a security situ-
ation [Usage]

• Conduct a cost/benefit analysis for a risk mitigation
approach [Usage]

• Identify and analyze some of the risks for an entire
system that arise from aspects other than the soft-
ware [Usage]

Readings : [Som17], [PM15]

4

Unit 3: (14)
Competences Expected: c,d,i,j,m
Topics Learning Outcomes

• Administration of the service as a practice.

• Service life cycle.

• Definitions and generic concepts.

• Models and key principles.

• Processes.

• Technology and architecture.

• Competence and training.

• Use and apply ITIL correctly in the software process.
[Usage]

Readings : [Som17], [PM15]

Unit 4: (14)
Competences Expected: c,d,i,j,m
Topics Learning Outcomes

• Fundamentals and Introduction.

• Control and IT Governance Frameworks.

• Use and apply COBIT correctly in the software pro-
cess. [Usage]

Readings : [Som17], [PM15]

9. WORKPLAN
9.1 Methodology
Individual and team participation is encouraged to present their ideas, motivating them with additional points in the

different stages of the course evaluation.
9.2 Theory Sessions
The theory sessions are held in master classes with activities including active learning and roleplay to allow students

to internalize the concepts.

9.3 Practical Sessions
The practical sessions are held in class where a series of exercises and/or practical concepts are developed through

problem solving, problem solving, specific exercises and/or in application contexts.

10. EVALUATION SYSTEM
********* EVALUATION MISSING ********

11. BASIC BIBLIOGRAPHY

[PM15] Roger S. Pressman and Bruce Maxim. Software Engineering: A Practitioner’s Approach. 8th. McGraw-Hill, Jan.
2015.

[Som17] Ian Sommerville. Software Engineering. 10th. Pearson, Mar. 2017.

5

