N
@

P

—
—— Peruvian Computing Society (SPC)
SOCIEDAD School of Computer Science
COMPUTACION Sillabus 2021-1

1. COURSE

CS291. Software Engineering I (Mandatory)
2. GENERAL INFORMATION

2.1 Credits :

2.2 Theory Hours ;2 (Weekly)
2.3 Practice Hours : 2 (Weekly)
2.4 Duration of the period : 16 weeks
2.5 Type of course : Mandatory
2.6 Modality : Face to face

e (CS113. Computer Science II. (374 Sem)
2.7 Prerrequisites
e (S271. Data Management. (4! Sem)
3. PROFESSORS
Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

The aim of developing software, except for extremely simple applications, requires the execution of a well-defined devel-
opment process. Professionals in this area require a high degree of knowledge of the different models and development
process, so that they are able to choose the most suitable for each development project. On the other hand, the develop-
ment of medium and large-scale systems requires the use of pattern and component libraries and the mastery of techniques
related to component-based design

5. GOALS

e Provide the student with a theoretical and practical framework for the development of software under quality
standards.

e Familiarize the student with the software modeling and construction processes through the use of CASE tools.
e Students should be able to select architectures and ad-hoc technology platforms for deployment scenarios

e Applying component-based modeling to ensure variables such as quality, cost, and time-to-market in development
processes.

e Provide students with best practices for software verification and validation.

6. COMPETENCES

b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Usage)

c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as
economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. (Usage)

i) An ability to use the techniques, skills, and modern computing tools necessary for computing practice. (Assessment)

k) Apply the principles of development and design in the construction of software systems of variable complexity. (Usage)

7. SPECIFIC COMPETENCES

d1) Collaborative software development using code repositories and version management (e.g., Git, Bitbucket, SVN) ()

1

d2) Developing group presentations and reports on specific topics. ()

d2) Developing group presentations and reports on specific topics. ()

i1) To develop components using modern computer techniques that implement functionality and are useful for various
information systems. ()

i2) Use programming languages and environments that allow the implementation and debugging of solutions. ()

i4) Use software verification and validation techniques. ()

i5) Use continuous integration techniques and tools. ()

k2) To perform adequately as part of a software implementation project ()

k3) Apply software development methodologies. ()

k4) Use programming paradigms to build software. ()

k5) Use algorithm techniques and data structures to build scalable software. ()

k6) Use the principles of software architecture to build reliable software products. ()

8. TOPICS

Unit 1: Requirements Engineering (18)

Competences Expected: ik

Topics

Learning Outcomes

e Describing functional requirements using, for exam-
ple, use cases or users stories

e Properties of requirements including consistency, va-
lidity, completeness, and feasibility

e Software requirements elicitation

e Describing system data using, for example, class di-
agrams or entity-relationship diagrams

e Non functional requirements and their relationship
to software quality

e Evaluation and use of requirements specifications
e Requirements analysis modeling techniques

e Acceptability of certainty / uncertainty considera-
tions regarding software / system behavior

e Prototyping

e Basic concepts of formal requirements specification
e Requirements specification

e Requirements validation

e Requirements tracing

e List the key components of a use case or similar de-
scription of some behavior that is required for a sys-
tem [Assessment]

e Describe how the requirements engineering process
supports the elicitation and validation of behavioral
requirements [Assessment]

e Interpret a given requirements model for a simple
software system [Assessment]

e Describe the fundamental challenges of and common
techniques used for requirements elicitation [Assess-
ment)

e List the key components of a data model (eg, class
diagrams or ER diagrams) [Assessment]

e Identify both functional and non-functional require-
ments in a given requirements specification for a soft-
ware system [Assessment]

e Conduct a review of a set of software requirements
to determine the quality of the requirements with
respect to the characteristics of good requirements
[Assessment]

e Apply key elements and common methods for elici-
tation and analysis to produce a set of software re-
quirements for a medium-sized software system [As-
sessment)

e Compare the plan-driven and agile approaches to re-
quirements specification and validation and describe
the benefits and risks associated with each [Assess-
ment]

e Use a common, non-formal method to model and
specify the requirements for a medium-size software
system [Assessment]

e Translate into natural language a software require-
ments specification (eg, a software component con-
tract) written in a formal specification language [As-
sessment]

e Create a prototype of a software system to mitigate
risk in requirements [Assessment)

e Differentiate between forward and backward tracing
and explain their roles in the requirements validation
process [Assessment]

Readings : [ES14], [HF03]

Unit 2: Software Design (18)

Competences Expected: ik

Topics Learning Outcomes

System design principles: levels of abstraction (ar-
chitectural design and detailed design), separation of
concerns, information hiding, coupling and cohesion
, re-use of standard structures

Design Paradigms such as structured design (top-
down functional decomposition), object-oriented
analysis and design, event driven design, component-
level design, data-structured centered, aspect ori-
ented, function oriented, service oriented

Structural and behavioral models of software designs
Design patterns

Relationships between requirements and designs:
transformation of models, design of contracts, invari-
ants

Software architecture concepts and standard archi-
tectures (e.g. client-server, n-layer, transform cen-
tered, pipes-and-filters)

The use of component desing: component selec-
tion, design, adaptation and assembly of compo-
nents, component and patterns, components and ob-
jects (for example, building a GUI using a standar
widget set)

Refactoring designs using design patterns

Internal design qualities, and models for them: effi-
ciency and performance, redundacy and fault toler-
ance, traceability of requeriments

Measurement and analysis of design quality
Tradeoffs between different aspects of quality
Application frameworks

Middleware: the object-oriented paradigm within
middleware, object request brokers and marshalling,
transaction processing monitors, workflow systems

Principles of secure design and coding

— Principle of least privilege
— Principle of fail-safe defaults

— Principle of psychological acceptability

Articulate design principles including separation of
concerns, information hiding, coupling and cohesion,
and encapsulation [Familiarity]

Use a design paradigm to design a simple software
system, and explain how system design principles
have been applied in this design [Usage]

Construct models of the design of a simple software
system that are appropriate for the paradigm used
to design it [Usage]

Within the context of a single design paradigm, de-
scribe one or more design patterns that could be ap-
plicable to the design of a simple software system
[Familiarity]

For a simple system suitable for a given scenario,
discuss and select an appropriate design paradigm
[Usage]

Create appropriate models for the structure and be-
havior of software products from their requirements
specifications [Usage]

Explain the relationships between the requirements
for a software product and its design, using appro-
priate models [Assessment]

For the design of a simple software system within
the context of a single design paradigm, describe the
software architecture of that system [Familiarity]

Given a high-level design, identify the software ar-
chitecture by differentiating among common soft-
ware architectures such as 3-tier, pipe-and-filter, and
client-server [Familiarity]

Investigate the impact of software architectures se-
lection on the design of a simple system [Assessment]

Apply simple examples of patterns in a software de-
sign [Usage]

Describe a form of refactoring and discuss when it
may be applicable [Familiarity]

Select suitable components for use in the design of a
software product [Usage]

Explain how suitable components might need to be
adapted for use in the design of a software product
[Familiarity]

Design a contract for a typical small software com-
ponent for use in a given system [Usage]

Discuss and select appropriate software architecture
for a simple system suitable for a given scenario [Us-

age]

Apply models for internal and external qualities in
designing software components to achieve an accept-

D T PR DR & o IR DR ¢ L TSR £ Ny T & th S

Unit 3: Software Construction (24)
Competences Expected: ik

Topics Learning Outcomes
e Coding practices: techniques, idioms/patterns, e Describe techniques, coding idioms and mechanisms
mechanisms for building quality programs for implementing designs to achieve desired proper-
ties such as reliability, efficiency, and robustness [As-

— Defensive coding practices sessment]

— Secure coding practices))))
e Build robust code using exception handling mecha-

— Using exception handling mechanisms to make nisms [Assessment]

programs more robust, fault-tolerant
e Describe secure coding and defensive coding prac-

e Coding standards tices [Assessment]

o Integration strategies e Select and use a defined coding standard in a small

e Development context: “green field” vs. existing code software project [Assessment]

base e Compare and contrast integration strategies includ-

ing top-down, bottom-up, and sandwich integration

— Change impact analysis
[Assessment]

— Change actualization

e Describe the process of analyzing and implementing
changes to code base developed for a specific project
[Assessment]

e Potential security problems in programs

— Buffer and other types of overflows

— Race conditions e Describe the process of analyzing and implementing

— Improper initialization, including choice of priv- changes to a large existing code base [Assessment]

ileges e Rewrite a simple program to remove common vulner-

— Checking input abilities, such as buffer overflows, integer overflows
and race conditions [Assessment]

Assuming success and correctness

Validating assumptions e Write a software component that performs some non-
trivial task and is resilient to input and run-time
errors [Assessment]

Readings : [ES14], [HF03]

9. WORKPLAN

9.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the
different stages of the course evaluation.

9.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students
to internalize the concepts.

9.3 Practical Sessions
The practical sessions are held in class where a series of exercises and/or practical concepts are developed through
problem solving, problem solving, specific exercises and/or in application contexts.

10. EVALUATION SYSTEM
ik EVALUATION MISSING #H#sex

11. BASIC BIBLIOGRAPHY

[ES14] Bert Bates Eric Freeman Elisabeth Robson and Kathy Sierra. Head First Design Patterns. 2nd. O’Reilly Media,
Inc, July 2014.

[HF03] Brian Lyons Hans-Erik Eriksson Magnus Penker and Davis Fado. UML 2 Toolkit. 2nd. Wiley, Oct. 2003.

