
Peruvian Computing Society (SPC)
School of Computer Science

Sillabus 2021-I

1. COURSE
CS112. Computer Science I (Mandatory)

2. GENERAL INFORMATION
2.1 Credits : 5
2.2 Theory Hours : 2 (Weekly)
2.3 Practice Hours : 4 (Weekly)
2.4 Duration of the period : 16 weeks
2.5 Type of course : Mandatory
2.6 Modality : Face to face
2.7 Prerrequisites : CS111. Computing Foundations. (1st Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE
This is the second course in the sequence of introductory courses in computer science. The course will introduce students
in the various topics of the area of computing such as: Algorithms, Data Structures, Software Engineering, etc.

5. GOALS

• Introduce the student to the foundations of the object orientation paradigm, allowing the assimilation of concepts
necessary to develop information systems.

6. COMPETENCES

a) An ability to apply knowledge of mathematics, science. (Assessment)

b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Usage)

i) An ability to use the techniques, skills, and modern computing tools necessary for computing practice. (Usage)

7. SPECIFIC COMPETENCES

a10) Evaluate and apply computational thinking to solve everyday problems ()

a11) Efficiently use conditional, repetitive control structures, functions, recursion, sorting and search. ()

b1) Identify and efficiently apply various algorithmic strategies and data structures for the solution of a problem given
certain space and time constraints. ()

d1) Collaborative software development using code repositories and version management (e.g., Git, Bitbucket, SVN) ()

8. TOPICS

1

Unit 1: General overwiew of Programming Languages (1)
Competences Expected: a
Topics Learning Outcomes

• Brief review of programming paradigms.

• Comparison between functional programming and
imperative programming.

• History of programming languages.

• Discuss the historical context for several program-
ming language paradigms [Familiarity]

Readings : [Str13], [Dei17]

Unit 2: Virtual Machines (1)
Competences Expected: a,b
Topics Learning Outcomes

• The virtual machine concept.

• Types of virtualization (including Hard-
ware/Software, OS, Server, Service, Network).

• Intermediate languages.

• Explain the concept of virtual memory and how it is
realized in hardware and software [Familiarity]

• Differentiate emulation and isolation [Familiarity]

• Evaluate virtualization trade-offs [Assessment]

Readings : [Str13], [Dei17]

2

Unit 3: Basic Type Systems (2)
Competences Expected: a,b,i
Topics Learning Outcomes

• A type as a set of values together with a set of op-
erations

– Primitive types (e.g., numbers, Booleans)

– Compound types built from other types (e.g.,
records, unions, arrays, lists, functions, refer-
ences)

• Model statement (link, visibility, scope and life
time).

• General view of type checking.

• For both a primitive and a compound type, infor-
mally describe the values that have that type [Fa-
miliarity]

• For a language with a static type system, describe
the operations that are forbidden statically, such as
passing the wrong type of value to a function or
method [Familiarity]

• Describe examples of program errors detected by a
type system [Familiarity]

• For multiple programming languages, identify pro-
gram properties checked statically and program
properties checked dynamically [Usage]

• Give an example program that does not type-check
in a particular language and yet would have no error
if run [Familiarity]

• Use types and type-error messages to write and de-
bug programs [Usage]

• Explain how typing rules define the set of operations
that are legal for a type [Familiarity]

• Write down the type rules governing the use of a
particular compound type [Usage]

• Explain why undecidability requires type systems to
conservatively approximate program behavior [Fa-
miliarity]

• Define and use program pieces (such as functions,
classes, methods) that use generic types, including
for collections [Usage]

• Discuss the differences among generics, subtyping,
and overloading [Familiarity]

• Explain multiple benefits and limitations of static
typing in writing, maintaining, and debugging soft-
ware [Familiarity]

Readings : [Str13], [Dei17]

3

Unit 4: Fundamental Programming Concepts (6)
Competences Expected: a,b,i
Topics Learning Outcomes

• Basic syntax and semantics of a higher-level language

• Variables and primitive data types (e.g., numbers,
characters, Booleans)

• Expressions and assingments

• Simple I/O including file I/O

• Conditional and iterative control structures

• Functions and parameter passing

• Analyze and explain the behavior of simple programs
involving the fundamental programming constructs
variables, expressions, assignments, I/O, control con-
structs, functions, parameter passing, and recursion.
[Assessment]

• Identify and describe uses of primitive data types
[Familiarity]

• Write programs that use primitive data types [Usage]

• Modify and expand short programs that use stan-
dard conditional and iterative control structures and
functions [Usage]

• Design, implement, test, and debug a program that
uses each of the following fundamental programming
constructs: basic computation, simple I/O, standard
conditional and iterative structures, the definition of
functions, and parameter passing [Usage]

• Write a program that uses file I/O to provide persis-
tence across multiple executions [Usage]

• Choose appropriate conditional and iteration con-
structs for a given programming task [Assessment]

• Describe the concept of recursion and give examples
of its use [Familiarity]

• Identify the base case and the general case of a
recursively-defined problem [Assessment]

Readings : [Str13], [Dei17]

4

Unit 5: Object-Oriented Programming (10)
Competences Expected: a,b,i
Topics Learning Outcomes

• Object-oriented design

– Decomposition into objects carrying state and
having behavior

– Class-hierarchy design for modeling

• Object-oriented idioms for encapsulation

– Privacy and visibility of class members

– Interfaces revealing only method signatures

– Abstract base classes

• Definition of classes: fields, methods, and construc-
tors

• Subclasses, inheritance, and method overriding

• Subtyping

– Subtype polymorphism; implicit upcasts in
typed languages

– Notion of behavioral replacement: subtypes
acting like supertypes

– Relationship between subtyping and inheri-
tance

• Using collection classes, iterators, and other common
library components

• Dynamic dispatch: definition of method-call

• Design and implement a class [Usage]

• Use subclassing to design simple class hierarchies
that allow code to be reused for distinct subclasses
[Usage]

• Correctly reason about control flow in a program us-
ing dynamic dispatch [Usage]

• Compare and contrast (1) the procedural/functional
approach—defining a function for each operation
with the function body providing a case for
each data variant—and (2) the object-oriented ap-
proach—defining a class for each data variant with
the class definition providing a method for each op-
eration Understand both as defining a matrix of op-
erations and variants [Assessment]

• Explain the relationship between object-oriented in-
heritance (code-sharing and overriding) and subtyp-
ing (the idea of a subtype being usable in a context
that expects the supertype) [Familiarity]

• Use object-oriented encapsulation mechanisms such
as interfaces and private members [Usage]

• Define and use iterators and other operations on ag-
gregates, including operations that take functions as
arguments, in multiple programming languages, se-
lecting the most natural idioms for each language
[Usage]

Readings : [Str13], [Dei17]

5

Unit 6: Algorithms and Design (3)
Competences Expected: a,b,i
Topics Learning Outcomes

• Problem-solving strategies

– Iterative and recursive mathematical functions

– Iterative and recursive traversal of data struc-
tures

– Divide-and-conquer strategies

• The role of algorithms in the problem-solving process

• Problem-solving strategies

– Iterative and recursive mathematical functions

– Iterative and recursive traversal of data struc-
tures

– Divide-and-conquer strategies

• Fundamental design concepts and principles

– Abstraction

– Program decomposition

– Encapsulation and information hiding

– Separation of behaivor and implementation

• Discuss the importance of algorithms in the problem-
solving process [Familiarity]

• Discuss how a problem may be solved by multiple
algorithms, each with different properties [Familiar-
ity]

• Create algorithms for solving simple problems [Us-
age]

• Use a programming language to implement, test, and
debug algorithms for solving simple problems [Usage]

• Implement, test, and debug simple recursive func-
tions and procedures [Usage]

• Determine whether a recursive or iterative solution
is most appropriate for a problem [Assessment]

• Implement a divide-and-conquer algorithm for solv-
ing a problem [Usage]

• Apply the techniques of decomposition to break a
program into smaller pieces [Usage]

• Identify the data components and behaviors of mul-
tiple abstract data types [Usage]

• Implement a coherent abstract data type, with loose
coupling between components and behaviors [Usage]

• Identify the relative strengths and weaknesses among
multiple designs or implementations for a problem
[Assessment]

Readings : [Str13], [Dei17]

6

Unit 7: Algorithmic Strategies (3)
Competences Expected: a,b,i
Topics Learning Outcomes

• Brute-force algorithms

• Greedy algorithms

• Divide-and-conquer

• Recursive backtracking

• Dynamic Programming

• For each of the strategies (brute-force, greedy,
divide-and-conquer, recursive backtracking, and dy-
namic programming), identify a practical example to
which it would apply [Familiarity]

• Use a greedy approach to solve an appropriate prob-
lem and determine if the greedy rule chosen leads to
an optimal solution [Assessment]

• Use a divide-and-conquer algorithm to solve an ap-
propriate problem [Usage]

• Use recursive backtracking to solve a problem such
as navigating a maze [Usage]

• Use dynamic programming to solve an appropriate
problem [Usage]

• Determine an appropriate algorithmic approach to a
problem [Assessment]

• Describe various heuristic problem-solving methods
[Familiarity]

Readings : [Str13], [Dei17]

Unit 8: Basic Analysis (2)
Competences Expected: a,b,i
Topics Learning Outcomes

• Differences among best, expected, and worst case be-
haviors of an algorithm

• Explain what is meant by “best”, “expected”, and
“worst” case behavior of an algorithm [Familiarity]

Readings : [Str13], [Dei17]

7

Unit 9: Fundamental Data Structures and Algorithms (6)
Competences Expected: a,b,i
Topics Learning Outcomes

• Simple numerical algorithms, such as computing the
average of a list of numbers, finding the min, max,

• Sequential and binary search algorithms

• Worst case quadratic sorting algorithms (selection,
insertion)

• Worst or average case O(N log N) sorting algorithms
(quicksort, heapsort, mergesort)

• Implement basic numerical algorithms [Usage]

• Implement simple search algorithms and explain the
differences in their time complexities [Assessment]

• Be able to implement common quadratic and O(N
log N) sorting algorithms [Usage]

• Discuss the runtime and memory efficiency of prin-
cipal algorithms for sorting, searching, and hashing
[Familiarity]

• Discuss factors other than computational efficiency
that influence the choice of algorithms, such as
programming time, maintainability, and the use of
application-specific patterns in the input data [Fa-
miliarity]

• Explain how tree balance affects the efficiency of var-
ious binary search tree operations [Familiarity]

• Demonstrate the ability to evaluate algorithms, to
select from a range of possible options, to provide
justification for that selection, and to implement the
algorithm in a particular context [Assessment]

• Trace and/or implement a string-matching algo-
rithm [Usage]

Readings : [Str13], [Dei17]

9. WORKPLAN
9.1 Methodology
Individual and team participation is encouraged to present their ideas, motivating them with additional points in the

different stages of the course evaluation.
9.2 Theory Sessions
The theory sessions are held in master classes with activities including active learning and roleplay to allow students

to internalize the concepts.

9.3 Practical Sessions
The practical sessions are held in class where a series of exercises and/or practical concepts are developed through

problem solving, problem solving, specific exercises and/or in application contexts.

10. EVALUATION SYSTEM
********* EVALUATION MISSING ********

11. BASIC BIBLIOGRAPHY

[Dei17] Deitel & Deitel. C++17 - The Complete Guide. 10th. Pearson, 2017. isbn: 978-0201734843.

[Str13] Bjarne Stroustrup. The C++ Programming Language. 4th. Addison-Wesley, 2013. isbn: 978-0-321-56384-2.

8

