
Universidad Nacional de Colombia (UNAL) Sede
Manizales

Undergraduate Program in
Information Systems

SILABO

CS392. Advanced Topics in Software Engineering
(Elective)

2022-II
1. General information
1.1 School : Sistemas de Información
1.2 Course : CS392. Advanced Topics in Software Engineering
1.3 Semester : 9no Semestre.
1.4 Prerrequisites : CS391. Software Engineering III. (7th Sem)
1.5 Type of course : Elective
1.6 Learning modality : Face to face
1.7 Horas : 2 HT; 2 HP; 2 HL;
1.8 Credits : 4

2. Professors

3. Course foundation
El desarrollo de software requiere del uso de mejores prácticas de desarrollo, gestión de proyectos de TI, manejo de
equipos y uso eficiente y racional de frameworks de aseguramiento de la calidad y de Gobierno de Portfolios, estos
elemento son pieza clave y transversal para el éxito del proceso productivo.
Este curso explora el diseño, selección, implementación y gestión de soluciones TI en las Organizaciones. El foco está
en las aplicaciones y la infraestructura y su aplicación en el negocio.

4. Summary

1. Software Design 2. Software Project Management 3. 4.

5. Generales Goals

• Entender una variedad de frameworks para el análisis de arquitectura empresarial y la toma de decisiones

• Utilizar técnicas para la evaluación y gestión del riesgo en el portfolio de la empresa

• Evaluar y planificar la integración de tecnoloǵıas emergentes

• Entender el papel y el potencial de las TI para a apoyar la gestión de procesos empresariales

• Entender los difentes enfoques para modelar y mejorar los procesos de negocio

• Describir y comprender modelos de aseguramiento de la calidad como marco clave para el éxitos de los proyectos
de TI.

• Comprender y aplicar el framework de IT Governance como elemento clave para la gestión del portfolio de
aplicaciones Empresariales

1



6. Contribution to Outcomes
This discipline contributes to the achievement of the following outcomes:

1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to
identify solutions. (Assessment)

2) Design, implement and evaluate a computing-based solution to meet a given set of computing requirements in the
context of the program’s discipline. (Assessment)

3) Communicate effectively in a variety of professional contexts. (Usage)

5) Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
(Usage)

6) Apply computer science theory and software development fundamentals to produce computing-based solutions.
(Assessment)

7) Develop computational technology for the well-being of all, contributing with human formation, scientific, techno-
logical and professional skills to solve social problems of our community. (Assessment)

7. Content

2



UNIT 1: Software Design (18)
Competences:
Content Generales Goals

• System design principles: levels of abstraction (ar-
chitectural design and detailed design), separation
of concerns, information hiding, coupling and cohe-
sion , re-use of standard structures

• Design Paradigms such as structured design (top-
down functional decomposition), object-oriented
analysis and design, event driven design, component-
level design, data-structured centered, aspect ori-
ented, function oriented, service oriented

• Structural and behavioral models of software designs

• Design patterns

• Relationships between requirements and designs:
transformation of models, design of contracts, invari-
ants

• Software architecture concepts and standard archi-
tectures (e.g. client-server, n-layer, transform cen-
tered, pipes-and-filters)

• The use of component desing: component selec-
tion, design, adaptation and assembly of compo-
nents, component and patterns, components and ob-
jects (for example, building a GUI using a standar
widget set)

• Refactoring designs using design patterns

• Internal design qualities, and models for them: effi-
ciency and performance, redundacy and fault toler-
ance, traceability of requeriments

• Measurement and analysis of design quality

• Tradeoffs between different aspects of quality

• Application frameworks

• Middleware: the object-oriented paradigm within
middleware, object request brokers and marshalling,
transaction processing monitors, workflow systems

• Principles of secure design and coding

– Principle of least privilege

– Principle of fail-safe defaults

– Principle of psychological acceptability

• Articulate design principles including separation of
concerns, information hiding, coupling and cohesion,
and encapsulation [Usage]

• Use a design paradigm to design a simple software
system, and explain how system design principles
have been applied in this design [Usage]

• Construct models of the design of a simple software
system that are appropriate for the paradigm used
to design it [Usage]

• Within the context of a single design paradigm, de-
scribe one or more design patterns that could be ap-
plicable to the design of a simple software system
[Usage]

• For a simple system suitable for a given scenario,
discuss and select an appropriate design paradigm
[Usage]

• Create appropriate models for the structure and be-
havior of software products from their requirements
specifications [Usage]

• Explain the relationships between the requirements
for a software product and its design, using appro-
priate models [Usage]

• For the design of a simple software system within
the context of a single design paradigm, describe the
software architecture of that system [Usage]

• Given a high-level design, identify the software ar-
chitecture by differentiating among common soft-
ware architectures such as 3-tier, pipe-and-filter, and
client-server [Usage]

• Investigate the impact of software architectures se-
lection on the design of a simple system [Usage]

• Apply simple examples of patterns in a software de-
sign [Usage]

• Describe a form of refactoring and discuss when it
may be applicable [Usage]

• Select suitable components for use in the design of a
software product [Usage]

• Explain how suitable components might need to be
adapted for use in the design of a software product
[Usage]

• Design a contract for a typical small software com-
ponent for use in a given system [Usage]

• Discuss and select appropriate software architecture
for a simple system suitable for a given scenario [Us-
age]

• Apply models for internal and external qualities in
designing software components to achieve an accept-
able tradeoff between conflicting quality aspects [Us-
age]

• Analyze a software design from the perspective of a
significant internal quality attribute [Usage]

• Analyze a software design from the perspective of a
significant external quality attribute [Usage]

• Explain the role of objects in middleware systems
and the relationship with components [Usage]

• Apply component-oriented approaches to the design
of a range of software, such as using components for
concurrency and transactions, for reliable commu-
nication services, for database interaction including
services for remote query and database management,
or for secure communication and access [Usage]

• Refactor an existing software implementation to im-
prove some aspect of its design [Usage]

• State and apply the principles of least privilege and
fail-safe defaults [Usage]

Readings: Sommerville (2017), Pressman and Maxim (2015)

3



UNIT 2: Software Project Management (14)
Competences:
Content Generales Goals

• Team participation

– Team processes including responsabilities for
task, meeting structure, and work schedule

– Roles and responsabilities in a software team

– Team conflict resolution

– Risks associated with virtual teams (communi-
cation, perception, structure)

• Effort estimation (at the personal level)

• Risk

– The role of risk in the lifecycle

– Risk categories including security, safety, mar-
ket, financial, technology, people, quality, struc-
ture and process

• Team management

– Team organization and decision-making

– Role identification and assigment

– Individual and team performance assessment

• Project management

– Scheduling and tracking

– Project management tools

– Cost/benefit analysis

• Software measurement and estimation techniques

• Software quality assurance and the role of measure-
ments

• Risk

– The role of risk in the lifecycle

– Risk categories including security, safety, mar-
ket, financial, technology, people, quality, struc-
ture and process

• System-wide approach to risk including hazards as-
sociated with tools

• Discuss common behaviors that contribute to the ef-
fective functioning of a team [Usage]

• Create and follow an agenda for a team meeting [Us-
age]

• Identify and justify necessary roles in a software de-
velopment team [Usage]

• Understand the sources, hazards, and potential ben-
efits of team conflict [Usage]

• Apply a conflict resolution strategy in a team setting
[Usage]

• Use an ad hoc method to estimate software develop-
ment effort (eg, time) and compare to actual effort
required [Usage]

• List several examples of software risks [Usage]

• Describe the impact of risk in a software develop-
ment lifecycle [Usage]

• Describe different categories of risk in software sys-
tems [Usage]

• Demonstrate through involvement in a team project
the central elements of team building and team man-
agement [Usage]

• Describe how the choice of process model affects
team organizational structures and decision-making
processes [Usage]

• Create a team by identifying appropriate roles and
assigning roles to team members [Usage]

• Assess and provide feedback to teams and individu-
als on their performance in a team setting [Usage]

• Using a particular software process, describe the as-
pects of a project that need to be planned and moni-
tored, (eg, estimates of size and effort, a schedule, re-
source allocation, configuration control, change man-
agement, and project risk identification and manage-
ment) [Usage]

• Track the progress of some stage in a project using
appropriate project metrics [Usage]

• Compare simple software size and cost estimation
techniques [Usage]

• Use a project management tool to assist in the as-
signment and tracking of tasks in a software devel-
opment project [Usage]

• Describe the impact of risk tolerance on the software
development process [Usage]

• Identify risks and describe approaches to manag-
ing risk (avoidance, acceptance, transference, mit-
igation), and characterize the strengths and short-
comings of each [Usage]

• Explain how risk affects decisions in the software de-
velopment process [Usage]

• Identify security risks for a software system [Usage]

• Demonstrate a systematic approach to the task of
identifying hazards and risks in a particular situation
[Usage]

• Apply the basic principles of risk management in a
variety of simple scenarios including a security situ-
ation [Usage]

• Conduct a cost/benefit analysis for a risk mitigation
approach [Usage]

• Identify and analyze some of the risks for an entire
system that arise from aspects other than the soft-
ware [Usage]

Readings: Sommerville (2017), Pressman and Maxim (2015)

4



UNIT 3: (14)
Competences:
Content Generales Goals

• Administración del servicio como práctica.

• Ciclo de vida del servicio.

• Definiciones y conceptos genéricos.

• Modelos y principios claves.

• Procesos.

• Tecnoloǵıa y arquitectura.

• Competencia y entrenamiento.

• Utilizar y aplicar correctamente ITIL en el proceso
de software. [Usage]

Readings: Sommerville (2017), Pressman and Maxim (2015)

UNIT 4: (14)
Competences:
Content Generales Goals

• Fundamentos e Introducción.

• Frameworks de Control y IT Governance.

• Utilizar y aplicar correctamente COBIT en el pro-
ceso de software. [Usage]

Readings: Sommerville (2017), Pressman and Maxim (2015)

8. Methodology

El profesor del curso presentará clases teóricas de los temas señalados en el programa propiciando la intervención de
los alumnos.

El profesor del curso presentará demostraciones para fundamentar clases teóricas.

El profesor y los alumnos realizarán prácticas

Los alumnos deberán asistir a clase habiendo léıdo lo que el profesor va a presentar. De esta manera se facilitará la
comprensión y los estudiantes estarán en mejores condiciones de hacer consultas en clase.

9. Assessment

Continuous Assessment 1 : 20 %

Partial Exam : 30 %

Continuous Assessment 2 : 20 %

Final exam : 30 %

References

Pressman, Roger S. and Bruce Maxim (Jan. 2015). Software Engineering: A Practitioner’s Approach. 8th. McGraw-Hill.
Sommerville, Ian (Mar. 2017). Software Engineering. 10th. Pearson.

5


